教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
杨波

职称:教授

职务:

学历:博士

电子邮件:boyang@xmu.edu.cn

联系电话:0592-2580653

办 公 室:海韵园伟德betvlctor体育官网C楼C608B

教育经历:

2008-13  加州大学圣迭戈分校(UCSD) 攻读博士学位


工作经历:

2013-16  罗格斯大学 (Rutgers) 访问助理教授(博士后)

2016-17  康奈尔大学 (Cornell) 访问助理教授(博士后)

2017-now  伟德betvlctor体育官网


研究方向:

多复变函数论,复几何。

具体说,本人关心凯勒几何和Hermitian几何里面的双截曲率和全纯截面曲率。例如

(1) 非负全纯截面曲率的紧致或者完备非紧凯勒流形的构造,以及全纯函数论。参见论文列表中的JGA2023,Ann.Fourier2019.

(2) 特殊Hermitian流形的分类及应用,特别是给定黎曼流形的正交复结构的刻画。参见论文列表中的TAMS2020,CAG2018,Adv.Math2017.

(3) 负曲率凯勒流形,work in progress.

(4) 几何流在复几何中的应用,参见IMRN2022.


社会兼职:

Referee services for math journals including:

Transactions of the AMS,

Revista Mathematica Iberoamericana,

Communications in Analysis and Geometry,

Complex Manifolds,

Mathematical Research letters,

Proceedings of the AMS,

Science China Mathematics,and more.


授课情况:

复分析(研究生必修),复流形(研究生选修)


论文:

Selected publication:

Yang, Bo; Zheng, Fangyang. Examples of complete Kähler metrics with nonnegative holomorphic sectional curvature. J. Geom. Anal.33(2023), no.2, Paper No. 47, 32 pp. A special issue in honor of Professor Peter Li.

Yang, Bo. Holomorphic functions on a class of Kähler manifolds with nonnegative curvature, I. Int. Math. Res. Not. IMRN(2022), no.4, 2615–2635.

Wang, Qingsong; Yang, Bo; Zheng, Fangyang. On Bismut flat manifolds. Trans. Amer. Math. Soc.373 (2020), no.8, 5747–5772.

Yang, Bo; Zheng, Fangyang. Hirzebruch manifolds and positive holomorphic sectional curvature. Ann. Inst. Fourier (Grenoble) 69(2019), no.6, 2589–2634.

Yang, Bo; Zheng, Fangyang. On compact Hermitian manifolds with flat Gauduchon connections. Acta Math. Sin. (Engl. Ser.)34(2018), no.8, 1259–1268. A special issue in memory of Professor Qikeng Lu.

Yang, Bo(PRC-XIAM-SM); Zheng, Fangyang. On curvature tensors of Hermitian manifolds. Comm. Anal. Geom.26(2018), no.5, 1195–1222.

Khan, Gabriel; Yang, Bo; Zheng, Fangyang. The set of all orthogonal complex structures on the flat 6-tori. Adv. Math.319(2017), 451–471.

Yang, Bo. On a problem of Yau regarding a higher dimensional generalization of the Cohn-Vossen inequality. Math. Ann.355(2013), no.2, 765–781.


详细论文发表情况可查阅

https://mathscinet.ams.org/mathscinet/author?authorId=963002


学生培养:


博士生导师(招生方向:多复变函数论,复几何)


The best way to contact me is by email(boyang@xmu.edu.cn).

If you have access to google, you may also check my webpage:

https://sites.google.com/view/boyangmath/